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A Refined Analysis Procedure for Low Temperature 
Transient Thermal Measurements 1 

J. Madsen 2 and J. U. Trefny 2 

We have employed a heat-pulse technique to study thermal properties at low 
temperatures. In the course of these studies we have identified a number of 
significant aspects of thermal transients which are not normally taken into 
account. These include finite-time effects for thermal diffusion, a modified 
equation in the presence of boundary scattering, and the role of thermal boun- 
dary resistance at the sample holder. We have used a steady-state, two-heater 
thermal conductivity measurement in conjunction with the heat-pulse studies to 
elucidate the latter effect. The result is that pulse measurements using a single 
thermometer can be used to determine both the boundary resistance and the 
heat capacity and thermal conductivity of a sample. 

KEY WORDS:  heat capacity; low temperature; thermal diffusivity; transient 
technique. 

1. I N T R O D U C T I O N  

We have employed a heat-pulse technique to study thermal properties at 
low temperatures. This technique, which allows simultaneous deter- 
mination of the heat capacity and thermal diffusivity, has the potential for 
measuring extremely small heat capacities as in thin films. The advantages 
of this technique, together with corrections for addenda and methods for 
data analysis, have been discussed in a previous paper [1]. Here we 
describe additional aspects and subtleties not covered before. These correc- 
tions are quite general in nature and should be applicable to other trans- 
ient techniques. In particular, we provide closed-form solutions to the dif- 
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fusion equation for the case of imperfect thermal contact at the sample 
holder and for the case of finite propagation velocity. The consequences of 
ignoring these and other factors in heat-pulse experiments are examined. 

Our method involves the introduction of a heat pulse at the free end of 
a long sample which is clamped to a temperature-controlled flange. The 
temperature is monitored at a distance x from the heater using a supercon- 
ducting thin-film bolometer. The recorded temperature profile as a function 
of time is compared to the solution of the one-dimensional diffusion 
equation with appropriate boundary conditions. The two fitting parameters 
are the heat capacity per unit volume, C, and the thermal diffusivity, D. 

The temperature profiles can conveniently be broken into early and 
late time segments relative to the time of the temperature maximum, 
tmax(~X2/2D). This paper is concerned primarily with important correction 
factors which affect the response of the system in these respective time 
segments. In Section 2 we provide the solution to the ordinary diffusion 
equation and discuss previous data analyses based on that solution. Sec- 
tion 3 deals with corrections to early-time data which involve finite 
propagation time effects (causality) and boundary scattering. Section 4 
examines late-time data, the effects of boundary resistance at the clamp, 
and the consequences of ignoring "small" terms in the fitting routine. 
Finally, Section 5 summarizes the effects of these considerations on ther- 
mal-property measurements. 

2. PREVIOUS FITTING TECHNIQUES 

2.1. Acausal (Instantaneous Response) Solution with No Thermal Boundary 
Resistance 

For our geometry, the parameters are the heat input Q, sample length 
L, cross-sectional area A, and bolometer location x measured relative to 
the free end of the sample. Assuming perfect thermal contact at the clam- 
ped end, the solution to the ordinary diffusion equation 

~= DV2 T (1) 
can be written 

6 T = (2Q/LCA) (2) exp(-DTcZn2t/4L 2) cos(nT~x/2L ) 
n - -  1 , 3 , 5  . . . .  

or, equivalently, as 

6T=(Q/CA ~x/-~t)exp(-x2/gDt){1 + ~ ( - 1 )  n 

• exp [ - n2L2( 1 - x/nL)/Dt ] t 
(3) 
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These two solutions form convenient starting points for analyzing late- and 
early-time data, respectively. 

2.2. Early-Time Data 

For times t < tmax, and provided that x < L/2, the contribution of the 
infinite series in Eq. (3) is negligible and the solution reduces to the semi- 
infinite sample result: 

6T= (Q/AC x ~ t )  exp(-x2/4Dt) (4) 

A plot of ln(6Tx/-t ) against 1/t, then, should give a straight line with the 
slope determined by the diffusivity D and the intercept determined by the 
specific heat C. This approach was used by Bertman et al. [2], who obser- 
ved the expected linear behavior except at late times. 

2.3. Late-Time Data 

The usual approach is to fit the data for times t > 2tma • to a single 
exponential. This seems justified because the contribution of the second 
term in Eq. (2) is only a few percent of the first term. Consequently, in a 
plot of ln(dT) against t, the slope and intercept will be determined by D 
and C, respectively. 

2.4. Moments  

An alternative approach to analysis is to use all of the data to 
calculate various temperature moments [3]: 

f . =  ~r t "  dt (5) 

By taking ratios of appropriate moments, C and D can be determined. This 
method actually incorporates the two previous techniques since the early 
data are usually obscured by electrical pickup and must be reconstructed 
to calculate the moments. Similarly, the very late-time data must be 
extrapolated from earlier points using Eq. (2) since the temperature 
response is obscured by noise at late times. Because the moments are 
calculated in practice by using the previously discussed fitting routines, any 
corrections to these fits will also affect the moments method. 
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3. Early-Time Corrections 

3.1. Causality 

The ordinary diffusion equation [Eq. (1)1 is acausal in that it predicts 
an immediate response at the bolometer when the heater is energized 
[Eqs. (2) and (3)]. In actuality, there must be a minimum time for the heat 
to diffuse to the bolometer. This time will be given roughly by x/v, where v 
is a carrier velocity. For phonon carriers in our geometry, the minimum 
time is of the order of l#s and cannot be neglected. 

To account for the finite-time effect, some authors have incorporated 
an additional term in the diffusion equation [4]: 

zT + J~= DV2T (6) 

where z is a characteristic carrier relaxation time. For a semiinfinite sample, 
an appropriate early-time solution of the modified equation is [5] 

6T= (Qv/ACD) e x p ( -  v2t/2D) Jo[(v/2D) ~ -  v2t 2] u(t - x/v) (7) 

where now v -- w/D/T. 
If we introduce the retarded time t ' - - t - x / v  and expand the Bessel 

function, Eq. (7) reduces to 

6T= (Q/AC ~x/-~') e x p [ -  (v2t'/4D)(x/1 + 2x/vt' - 1)23(1 + 2x/vt')-~ (8) 

It can be readily verified that one recovers the acausal solution in the limit 
of infinite v. 

To examine the effects of the finite propagation velocity, we first show 
a plot of the expected temperature response for both infinite and finite v 
(Fig. 1), choosing reasonable values for the other required parameters. 
These computer-generated data were then fit using the conventional 
scheme given in Section 2.2, which ignores the causality effect. The 
numerical results are shown in the Fig. 1. Except for very early times, even 
the causal plot looks quite linear. However, the error in D is nearly 5%, 
while that of the calculated C is about 2 %. 

Since these errors are small, the effect can easily be overlooked, 
especially if a longer time scale is employed when obtaining the data. The 
important point here is that a more sophisticated fitting routine based on 
Eq. (6) not only would give more accurate results for D and C, but also 
would allow one to determine the propagation velocity of the pulse. This 
parameter is of considerable interest but has not previously been deter- 
mined in this way. 
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3.2. Matthews' Equation 

The essential physics of the diffusion equation is altered considerably 
when boundary scattering dominates. The effects should be most apparent 
in crystalline materials at low temperatures when the intrinsic mean free 
path becomes larger than the sample dimensions. 
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Fig. 1. Calculated temperature response for finite and infinite 
pulse velocity (bottom). Results of fitting finite velocity data to 
Eq. (4), which assumes an infinite velocity (top). 
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Matthews' analysis of this problem [6] for phonons in cylindrical 
geometry has led to the following diffusion equation: 

J'= D V 2 T  - AVZT (9) 

where D = g l l a / 2 n  2 and A = a I 2 a / 2 ~  2. Here 6 is the Casimir average 
velocity of the phonon modes [(1/ci2)/(1/ci3)], a is the sample radius, and 
a[ = 6(1/ci)] is a numerical factor of order unity. The factors I1 and I2 are 
dimensionless integrals in which the finite length of the sample is taken into 
account. A potential complicating factor which is not included is specular 
reflection. 

Unfortunately, Eq. (9) is valid only for long-wavelength components 
of T. This restriction has hampered our attempts to obtain an analytic 
solution for our geometry. The situation is further complicated if, as we 
believe, the "causality" term of Eq. (6) must be included in Eq. (9). The 
effect of either additional term (or both) is to prevent the bolometer 
response from starting immediately after the heater has been energized. 

We have made extensive measurements on crystalline sapphire sub- 
strates for which the early-time data are not described by conventional dif- 
fusion as in Section 2.2. If the data are forced into the form of Eq. (4), a 
"best fit" is consistently obtained by inserting a time delay of 1 or 2#s. This 
is clear evidence that the effects we have described are important and 
measurable in our experiments. A more complete analysis and comparison 
with actual data will be published elsewhere. To our knowledge there has 
been no previous experimental verification of Eq. (9) using direct transient 
techniques. 

4. LATE-TIME CORRECTIONS 

4.1. Validity of Single-Exponential Fits 

As mentioned previously, the standard procedure for fitting late-time 
data has been to fit to a single exponential for times greater than 2tmax. 
The contributions of the second term in the series of Eq. (2) are typically 
about 4% at 2tma x and 1.6% at 3t . . . .  respectively. Because the corrections 
are small, a semilogarithmic plot appears linear over this time scale as 
shown in Fig. 2. Nevertheless, a single exponential fit will lead to errors of 
greater than 10% for D and greater than 5% for C under these conditions! 
It is necessary to incorporate at least two of the exponential terms to 
obtain acceptable results. 

We have used an iterative routine which enables us to fit to the first 
three exponential terms. This method exploits the fact that the con- 
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Fig. 2. Fit of data generated from Eq. (2) to a single exponential 
term from 2tmax to 3.5tmax. The solid line shows the expected result. 

tributions of succeeding terms in the series are small compared to the first 
term. The procedure requires a reasonable first estimate of the factor 
7 = D~2/4L2. The estimated value is used in a fitting routine which then 
returns a new value, 7', and iteration is continued until the fit converges. 

For the case of zero boundary resistance (see Section 4.2), the relevant 
equations are as follows: 

where 

ordinate, y=ln[6T/(1 +a) ] ;  abcissa, x =  t (10) 

cos(3~x/2L) e x p ( -  87 t) + cos(5~x/2L) e x p ( -  247t ) 

cos(~x/2L) 
(11) 

The slope then is equal to - 7 '  and the intercept gives ln[(2Q/ 
ACL) cos(~x/2L)]. This technique is generally applicable whenever suc- 
ceeding terms in a series solution are known and are small compared to the 
first term. 

4.2. Boundary Resistance at the Clamp 

If one tries to avoid the complications of fitting to a sum of exponen- 
tials by going to even later times, another problem enters. As very late-time 
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data are used, the effect of boundary resistance becomes paramount. This 
may be modeled by replacing the usual boundary condition, T = 0 at x = L, 
by the condition k(~bT/~x)= -h6T. Here k is the thermal conductivity of 
the sample and h is the thermal boundary conductance [7].  The con- 
sequent solution to the ordinary diffusion equation becomes 

6T=(2Q/AC) ~ g~(x+L) g.(L)exp(-D~.2t)/R. (12) 
n--1 

where 

and 

gn = k~n cos(~nx) + h sin(~.x) 

R n = L(k20tn  2 q- h 2) + kh 

tan(2~,L) = ( 2~,kh )/ ( k2c~n 2 - h 2) 

While the sum is over all n, the coefficients for even values of n are typically 
five orders of magnitude smaller than the odd coefficients and can be 
neglected. 3 

In Fig. 3 we show computer-generated data for several values of the 
parameter hL/k. Note that, as hL/k becomes large, the solutions approach 

3 Subsequent investigation has shown that the even coefficients are zero. 
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Fig. 3. Fit of data generated from Eq. (12), which includes boundary 
resistance at the clamp, to Eq. (2), which ignores it. The fit uses the 
routine described in section 4.1, where F ( t ) = l n [ T / ( l + e ) ] .  The 
values o f h L / k  used are (11) 0.3, (1~1) 3, ( [ ] )  30, and (O)  300. 
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the prediction of Eq. (2), but only slowly. Only for hL/k > 500 do the 
results on this time scale agree with the perfect-contact model. 

To emphasize the importance of this correction, we have calculated 
the theoretical boundary resistance for a sapphire sample clamped to a 
copper holder [8]. At low temperatures, the theoretical ratio h/k is 
~930m 1! Thus, sample lengths in excess of 0.5 m would be required in 
order to neglect the corrections for ordinary measuring times. We have 
made direct measurements of h/k for the sapphire/copper combination 
using a two-heater [9], steady-state technique. Even with various clamping 
arrangements, greases, and the like, we have been able to achieve only 
about one-tenth of the ideal boundary conductance. The consequent 
corrections for very late-time data analysis are considerable. In practice, we 
incorporate hL/k as a third fitting parameter and use a multiterm exponen- 
tial fit as described in Section 4.1. As a corollary to this work, early-time 
data, late-time data, and single-heater steady-state measurements may be 
analyzed together for self-consistent values of the three parameters D, C, 
and hL/k. 

5. CONCLUSIONS 

We have shown that previous data analysis techniques for transient 
thermal measurements can result in significant errors. Boundary resistance 
is a potential problem in any geometry where heat is transported between 
dissimilar materials. One must be extremely careful when neglecting 
exponentially small terms in series solutions to the diffusion equation. 
Finally, early-time data can be misleading if causality and the effects of 
boundary scattering are not carefully considered. The latter topics are of 
fundamental interest and will be treated more extensively in later 
publications. 
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